Лекция 2

Тема. Числовая последовательность, её предел.

План лекции:

- 1) Определение числовой последовательности. Бесконечно большие и бесконечно малые последовательности.
- 2) Предел последовательности.
- 3) Свойства сходящихся последовательностей.
- 4) Свойства бесконечно малых и бесконечно больших последовательностей.
- 5) Монотонные последовательности. Теорема о существовании предела монотонной последовательности. Число е.

§1. Определение числовой последовательности. Бесконечно большие и бесконечно малые последовательности.

Если каждому натуральному числу п поставлено в соответствие в силу некоторого вполне определенного закона число x_n , то говорят, что определена **числовая последовательность** (или просто последовательность) $x_1, x_2, x_3, ..., x_n, ...$ Кратко ее обозначают символом $\{x_n\}$ или (x_n) . Число x_n называется **членом** (элементом) последовательности, а n номером элемента. Последовательность есть числовая функция натурального аргумента: $x_n = f(n), n \in N$.

Последовательности $\{x_n + y_n\}$, $\{x_n - y_n\}$, $\{x_n y_n\}$, $\{x_n / y_n\}$ называются соответственно суммой, разностью, произведением и частным двух последовательностей: $\{x_n\}$ и $\{y_n\}$ (для частного $y_n \neq 0$).

ОПРЕДЕЛЕНИЕ. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется *бесконечно большой*, если $\forall \varepsilon > 0 \ \exists n_{\varepsilon} \in N$, такой что $\forall n \geq n_{\varepsilon}$ выполняется неравенство $|x_n| > \varepsilon$.

ОПРЕДЕЛЕНИЕ. Числовая последовательность $\{x_n\}_{n=1}^\infty$ называется **бесконечно малой**, если $\forall \varepsilon > 0$ $\exists n_\varepsilon \in N$, такой что $\forall n \geq n_\varepsilon$ выполняется неравенство $|x_n| < \varepsilon$.

Пример 1. Доказать, что последовательность $x_n = (-1)^n n$ является бесконечно большой. *Решение*. Возьмём $\forall \varepsilon > 0$. Надо найти номер n_{ε} , начиная с которого выполняется неравенство $|x_n| > \varepsilon \iff |(-1)^n n| > \varepsilon \iff n > \varepsilon$. Следовательно, $n_{\varepsilon} = [\varepsilon] + 1$.

[t] – целая часть числа t (антье) (например, [5,3]=5, [-2,6]=-2)

Пример 2. Доказать, что последовательность $x_n = \frac{1}{n!}$ является бесконечно малой.

Pешение. Возьмём $\forall \varepsilon > 0$. Надо найти номер n_{ε} , начиная с которого выполняется

неравенство
$$|x_n| < \varepsilon \Leftrightarrow \left|\frac{1}{n!}\right| < \varepsilon \Leftrightarrow \frac{1}{n!} < \varepsilon$$
. А так как: $\frac{1}{n!} = \frac{1}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot n} < \frac{1}{1 \cdot 2 \cdot 2 \cdot \ldots \cdot 2} = \frac{1}{2^{n-1}}$,

то искомый номер найдём из неравенства $\frac{1}{2^{n-1}} < \varepsilon$. $\Rightarrow 2^{n-1} > \frac{1}{\varepsilon} \Leftrightarrow n-1 > \log_2 \frac{1}{\varepsilon} \Rightarrow$

$$n_{\varepsilon} = \left[\log_2 \frac{1}{\varepsilon}\right] + 1.$$

§2. Предел последовательности.

ОПРЕДЕЛЕНИЕ. Число a называется пределом последовательности $\{x_n\}_{n=1}^{\infty}$, если для любого $\varepsilon>0$ найдется такое натуральное число n_{ε} (зависящее от ε), что для всех членов последовательности с номерами $n\geq n_{\varepsilon}$ справедливо неравенство: $|x_n-a|<\varepsilon$.

При этом пишут: $\lim_{n\to\infty} x_n = a$, а последовательность $\{x_n\}_{n=1}^{\infty}$ называют сходящейся к числу а. Данное определение символически можно записать в виде:

$$a = \lim_{n \to \infty} x_n \iff \forall \varepsilon > 0 \ \exists \ n_{\varepsilon} \in N : \forall n > n_{\varepsilon} \Longrightarrow |x_n - a| < \varepsilon.$$

Неравенство $|x_n - a| < \varepsilon \Leftrightarrow a - \varepsilon < x_n < a + \varepsilon \Leftrightarrow x_n \in (a - \varepsilon; a + \varepsilon) \Leftrightarrow x_n$ принадлежит ε -окрестности точки a. С геометрической точки зрения это означает, что в любой ε -окрестности точки a находятся все члены последовательности, начиная с некоторого номера (зависящего, вообще говоря, от ε) или, что то же самое, вне любой ε - окрестности точки a находится лишь конечное число членов последовательности.

Последовательность, имеющая конечный предел, называется сходящейся, в противном случае – расходящейся.

ОПРЕДЕЛЕНИЕ. Символическая запись $\lim_{n\to\infty} x_n = \infty$ обозначает, что для любого $\varepsilon>0$ найдется такое натуральное число n_ε (зависящее от ε), что для всех членов последовательности с номерами $n\geq n_\varepsilon$ справедливо неравенство: $|x_n|>\varepsilon$.

Пример 3. Рассмотрим последовательность y_1 , =0,3, y_2 ,=0,33, y_3 ,=0,333, ...

Очевидно, что y_n неограниченно приближается к $\frac{1}{3}$ (десятичные дроби дают все точные

выражения дроби $\frac{1}{3}$). Стало быть, $\frac{1}{3}$ есть предел последовательности $\lim_{n\to\infty} y_n = \frac{1}{3}$. Разность

 $y_n - \frac{1}{3}$ последовательно равна $y_1 - \frac{1}{3} = -\frac{1}{30}$, $y_2 - \frac{1}{3} = -\frac{1}{300}$, $y_3 - \frac{1}{3} = -\frac{1}{3000}$ т.е. $y_n - \frac{1}{3} = -\frac{1}{3000}$

 $\frac{1}{3 \cdot 10^n}$. Неограниченность приближения y_n к $\frac{1}{3}$ выражается в том, что абсолютная

величина разности, начиная с некоторого номера n_{ε} , остается меньше любого (заранее заданного) числа ε . Так, если задать ε =0,01, то n_{ε} =2; т.е. начиная со второго номера,

абсолютная величина $|y_n - \frac{1}{3}|$ остается меньшей 0,01. Если задать $\varepsilon = 0,005 \ (= \frac{1}{200})$, то попрежнему $n_{\varepsilon} = 2$. Если $\varepsilon = 0,001$, то $n_{\varepsilon} = 3$; $\varepsilon = 0,00001$, то $n_{\varepsilon} = 5$ и т.д.

<u>Пример 4.</u> Пусть $x_n = \frac{n}{n+1}$, (n = 1,2,...). Доказать, что $\lim_{n \to \infty} x_n = 1$.

Решение. Возьмём $\forall \varepsilon > 0$. Надо найти номер n_{ε} , начиная с которого выполняется

неравенство
$$|x_n-1| < \varepsilon \iff \left|\frac{n}{n+1}-1\right| < \varepsilon \iff \left|\frac{n-n-1}{n+1}\right| < \varepsilon \iff \frac{1}{n+1} < \varepsilon \iff n+1 > \frac{1}{\varepsilon}$$
 $\iff n > \frac{1}{\varepsilon} - 1 \implies n_{\varepsilon} = \left\lceil \frac{1}{\varepsilon} - 1 \right\rceil + 1 = \left\lceil \frac{1}{\varepsilon} \right\rceil.$

§3. Свойства сходящихся последовательностей.

Свойства:

1. Предел последовательности единствен.

Свойство "зажатой" последовательности:

- **2.** Ecsu $x_n \to a, y_n \to a, \ x_n \le z_n \le y_n \ (n \in \mathbb{N}), \ mo \ z_n \to a.$
- **3.** Ecsu $x_n \to a$, mo $|x_n| \to |a|$.

- (x_n) называется 4. Последовательность ограниченной, если $\exists M > 0 \ \forall n \in \mathbb{N} \ (|x_n| \leq M).$
 - **5.** Если $x_n \to 0$, а последовательность (y_n) ограничена, то $x_n y_n \to 0$.
- Следует из оценки $0 \le |x_n y_n| \le M|x_n|$ и свойств 2, 3. \triangleright
 - 6. Сходящаяся последовательность ограничена.
 - 7. $Ec_{\mathcal{A}u} x_n \to a, y_n \to b, mo$
 - (a) $x_n \pm y_n \rightarrow a \pm b$,
 - (б) $x_n y_n \to ab$,
 - (B) $\frac{x_n}{y_n} \to \frac{a}{b} (y_n \neq 0, b \neq 0).$
- 8. Изменение конечного числа членов последовательности не влияет на её сходимость.
 - §4. Свойства бесконечно малых и бесконечно больших последовательностей.

Для бесконечно малых последовательностей справедливо:

- 1° . Если $\{\alpha_{n}\}$, $\{\beta_{n}\}$ бесконечно малые последовательности, то их сумма или разность $\{\alpha_{n}\pm\beta_{n}\}$ также последовательность бесконечно малая.
- 2^{0} . Если $\{\alpha_{n}\}$ бесконечно малая, а $\{x_{n}\}$ ограниченная последовательность, то их произведение $\{\alpha_{n}:x_{n}\}$ последовательность бесконечно малая.
- 3°. Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Для бесконечно больших последовательностей справедливо:

- 1°. Бесконечно большая последовательность всегда неограничена. Однако не всякая неограниченная последовательность является бесконечно большой.
- 2°. Последовательность $\{x_n\}, x_n \neq 0$ является бесконечно большой тогда и только тогда, когда последовательность $\left\{\frac{1}{r}\right\}$ бесконечно малая.
 - §5. Монотонные последовательности. Теорема о существовании предела монотонной последовательности. Число е.

Числовую последовательность $\{x_n\}$ называют возрастающей (неубывающей), если каждый последующий член последовательности больше (не меньше) предыдущего, т. е. $x_{n+1} > x_n (x_{n+1} \ge x_n)$.

Числовую последовательность $\{x_n\}$ называют убывающей (невозрастающей), если каждый последующий член последовательности меньше (не больше) предыдущего, т. е. $x_{n+1} < x_n \ (x_{n+1} \le x_n)$.

Определенные выше последовательности называют монотонными.

Теорема. Монотонная и ограниченная числовая последовательность имеет предел. Иными словами:

Всякая ограниченная монотонная последовательность сходится.

Последовательность $n\mapsto \left(1+\frac{1}{n}\right)^n,\ n\in\mathbb{N},$ имеет конечный предел, называемый числом e:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2,718 \ 281 \ 828 \ 459 \ 045 \dots$$

<u>Пример 5.</u> Пользуясь теоремой о существовании предела монотонной и ограниченной последовательности, доказать сходимость последовательности $x_n = \left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{4}\right)..\left(1 + \frac{1}{2^n}\right).$

Решение. Так как $\forall n \in \mathbb{N}$ $x_n > 0$, то сравним отношение каждого последующего члена последовательности к предыдущему с 1:

$$\frac{x_{n+1}}{x_n} = \frac{\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{4}\right)..\left(1 + \frac{1}{2^n}\right)\left(1 + \frac{1}{2^{n+1}}\right)}{\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^n}\right)} = 1 + \frac{1}{2^{n+1}} > 1 \qquad \forall n \in \mathbb{N} \qquad \Leftrightarrow \quad x_{n+1} > x_n \qquad \forall n \in \mathbb{N}$$

 \Leftrightarrow эта последовательность является возрастающей. Следовательно, её первый член $x_1 = 1 + \frac{1}{2} = \frac{3}{2}$ ограничивает эту последовательность снизу. Докажем, что данная последовательность ограничена и сверху.

Выше мы воспользовались неравенством $\frac{1}{n+1} < \ln\left(1+\frac{1}{n}\right) < \frac{1}{n} \quad \forall n \in \mathbb{N}$

Получили: $\ln x_n < 1 \iff x_n < e \qquad \forall n \in N \, . \blacktriangleleft$

Таким образом, $\forall n \in \mathbb{N}$ $\frac{3}{2} = x_1 \le x_n <$ е. Следовательно, $\exists \lim_{n \to \infty} x_n \in \mathbb{R}$.

<u>Пример 6.</u> Пользуясь теоремой о существовании предела монотонной и ограниченной последовательности, доказать сходимость последовательности $x_n = \frac{10}{1} \cdot \frac{11}{3} \cdot ... \frac{n+9}{2n-1}$.

Решение:

1) Монотонность:
$$\frac{x_{n+1}}{x_n} = \frac{\frac{10}{1} \cdot \frac{11}{3} \dots \frac{n+9}{2n-1} \cdot \frac{n+10}{2n+1}}{\frac{10}{1} \cdot \frac{11}{3} \dots \frac{n+9}{2n-1}} = \frac{n+10}{2n+1} < 1, \quad \text{если} \quad n+10 < 2n+1, \quad \Rightarrow$$

n > 9. Следовательно, начиная с n > 9: $x_{n+1} < x_n$,

2) Ограниченность: $0 < x_n < \max\{x_1, x_{10}\}$

Следовательно по теореме последовательность сходится.